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  1.	
  grayscale	
  -­‐>	
  sizing	
  funcBon	
  for	
  	
  

edge-­‐detect	
  

2.	
  SBppling	
  via	
  
Maximal	
  	
  
Poisson-­‐Disk	
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3.	
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  points	
  
	
  
Replace	
  2	
  for	
  1.	
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  original	
  
sizing	
  funcBon.	
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  quality	
  loss	
  

Application	



Universally	
  lighter,	
  
but	
  features	
  sBll	
  
disBnct	
  



Overview 
•  Input: point sample distribution 

Poisson disks, Delaunay Refinement 
–  Sizing function  

•  Adheres approximately 
• Observe: other distributions also respect sizing function,  

         might be smaller 
• Process 

– Replace points 2-for-1 
– Adhere to sizing function 

• Result 
–  Fewer points --- how many? 
– Retained randomness --- surprise! 



Mesh	
  Improvement	
  
SiKing	
  triangulaBons	
  from	
  
	
  	
  	
  	
  DR	
  Delaunay	
  Refinement	
  
	
  	
  	
  	
  	
  	
  ODR	
  Delaunay	
  Refinement	
  w/	
  Off-­‐centers	
  	
  
	
  	
  	
  	
  MPS	
  Maximal	
  Poisson-­‐disk	
  Sampling	
  

MPS ���
new disk	



global uniform random locations	


outside prior disks	



DR���
new disk	



center of large empty dual circle	





Problem 
Painting Yourself Into a Corner 

MPS, DR 
easy to introduce a small gap 
that later forces  

–  distance = r + eps 
–  dense sampling 

gap 
ßà 

disk later 	



lots of r ≈1 edges	



MPS	


DR	



1 

2 



DR Solution 
off-centers DR (ODR) 

DR 
gap 
ßà 

disk later 	



ODR 
no gap 

move disk  
towards short edge 

fewer r ≈1 edges	





Offcenters reduces density… 
by a lot for non-uniform sizing functions 

“Off-centers: A new type of Steiner points for computing 
size-optimal quality-guaranteed Delaunay triangulations”	



(a) input	

 (b) DR	

 (c) ODR	



But we will focus on 	


r = 1, uniform	





Our	
  MPS-­‐like	
  Solu0on:	
  Si3ing 
• Post-­‐process	
  
• For	
  all	
  pairs	
  of	
  points	
  with	
  overlapping	
  disks	
  

–  Try	
  to	
  replace	
  2-­‐for-­‐1	
  
–  (Replacing	
  changes	
  the	
  set	
  of	
  overlapping	
  pairs)	
  

• Quit	
  when	
  no	
  pair	
  can	
  be	
  replaced	
  

replaced	





Si3ing	
  Algorithm	
  
Gather	
  Boundary	
  Disks 

1.	
  Gather	
  disks	
  overlapping	
  P	
  
–  (Q)	
  

Sort	
  by	
  angle	
  around	
  P	
  (Q)	
  	
  

P	
   Q	
   Q	
  P	
  

2.	
  S0tch	
  lists	
  together	
  
–  Replace	
  Q	
  in	
  ListP	
  by	
  ListQ	
   3.	
  Remove	
  duplicate	
  disks	
  



Si3ing	
  Algorithm	
  
Winnow	
  Non-­‐Bounding	
  Disks 

•  Remove	
  disks	
  not	
  bounding	
  the	
  white	
  area	
  
–  Test	
  consecu0ve	
  disks	
  in	
  list,	
  see	
  if	
  le3	
  point	
  of	
  intersec0on	
  is	
  inside	
  next	
  disk	
  

bounding	
  me?	
  

–  In-­‐circle	
  test	
  speeds	
  up	
  intersec0on	
  point	
  test	
  by	
  3x	
  	
  
	
  technical	
  for	
  non-­‐constant	
  radius,	
  details	
  in	
  paper	
  J	
  

	
  



Si3ing	
  Algorithm	
  
Exclusion	
  –	
  Inclusion	
  Disks 

–  A	
  new	
  disk	
  will	
  cover	
  all	
  the	
  white	
  area	
  
•  Iff	
  it	
  covers	
  all	
  the	
  corners	
  of	
  intersec0on	
  

–  Reason:	
  because	
  disks	
  are	
  convex	
  
–  Need	
  replacement	
  disk	
  

•  Outside	
  all	
  sample	
  disks	
  
•  Inside	
  all	
  dual	
  corner	
  disks	
  

	
  
Is there a common intersection?	





Si3ing	
  Algorithm	
  
Search	
  for	
  Random	
  Loca0on	
  –	
  Using	
  “Simple	
  MPS” 

Solu0on:	
  	
  
•  Simple	
  MPS	
  [Ebeida	
  et	
  al.	
  Eurographics	
  2012]	
  	
  
•  extended	
  for	
  purple	
  inclusion	
  disks	
  

Flat	
  quadtree	
  
•  Keep	
  /	
  discard	
  squares	
  en0rely	
  inside	
  /	
  outside	
  disks	
  
•  Sample	
  from	
  kept	
  squares	
  –	
  done	
  if	
  success	
  
•  Refine	
  all	
  squares	
  and	
  repeat	
  

If	
  last	
  square	
  is	
  discarded	
  (machine	
  precision)	
  
•  No	
  replacement	
  disk	
  exists,	
  try	
  a	
  different	
  pair	
  

	
  

in	


out	



–  Problem:	
  find	
  random	
  point	
  that	
  is	
  
•  Outside	
  all	
  sample	
  disks	
  
•  Inside	
  all	
  dual	
  corner	
  disks	
  

Simple	
  MPS	
  Algorithm	
  Details	
  	
  
	
  
IniBalize	
  
	
  	
  	
  	
  bounding	
  box	
  of	
  purple	
  corners	
  
	
  	
  	
  	
  subdivide	
  into	
  squares	
  -­‐	
  diagonal	
  about	
  radius	
  
	
  
	
  
	
  
	
  	
  Sample	
  C	
  |	
  #square	
  Bmes	
  |	
  
	
  	
  	
  	
  	
  	
  pick	
  a	
  square	
  
	
  	
  	
  	
  	
  	
  pick	
  a	
  point	
  p	
  in	
  the	
  square	
  
	
  	
  	
  	
  	
  	
  keep	
  p	
  if	
  out-­‐blue	
  &	
  in-­‐purple	
  
	
  	
  	
  	
  	
  	
  	
  	
  success!	
  
	
  
	
  
	
  	
  Refine	
  all	
  squares	
  
	
  	
  	
  	
  	
  	
  center	
  inside	
  a	
  blue	
  circle	
  -­‐	
  delta?	
  Discard	
  
	
  	
  	
  	
  	
  	
  center	
  outside	
  a	
  purple	
  circle	
  +	
  delta?	
  Discard	
  
	
  
Repeat	
  with	
  refined	
  squares	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  No	
  squares?	
  No	
  replacement	
  exists	
  

in?	

 out?	



!in then discard n	



success	



!out then discard n	





SiK-­‐>	
  

Sifting Improves All  
Uniform Test Distributions 

• Si3ing	
  improves,	
  MPS,	
  DR	
  and	
  further	
  improves	
  ODR	
  

DR	

 sDR	



MPS	

 sMPS	





Sifting reduces 
 number of points by ≈25%  

density bracketed by 
non-random tilings 
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anyway. In that sense our resampling is a strict improvement.

Nonuniform sampling requires slightly different handling in

the Filtering and Resampling steps. (By non-uniform we

mean that the sampling density varies spatially, but the prob-

ability of selecting the next random point within a given sub-

region is still proportional to the subregion’s area.)

The key change for the nonuniform case is to use a

weighted power diagram and its dual Regular triangulation

[AE84]. The standard construction uses weights equal to

the disk radii (sizing function). There is a nice geometric

correspondence between power diagrams and our disks and

points [YW12]. As before, two points are neighbors if their

disks overlap. The line separating the Voronoi cells of neigh-

bors l1 and l2 is straight and perpendicular to l1l2 but shifted

if the disks d1 and d2 have unequal radii: it is the line pass-

ing through the intersection points of d1 and d2. As in the

Voronoi diagram, for three weighted points the three sepa-

rating lines meet at a common point, the power vertex cP.

Filtering. For the equidistant-point-in-d3 check we use the

power vertex instead of the Voronoi vertex. The correctness

of this follows directly from the redefinition of distance and

separators. Figure 6b shows an example where using the

power vertex cP gives the correct answer, but the unweighted

Voronoi vertex cV does not.

Resampling. In the uniform case, the disk of any sample in

a flat quadtree square cannot cover a corner if the square is

farther than r from the corner. Such squares are discarded.

For the nonuniform case, the radius is changing. Since we

cannot check the radius at every point in the square, we adopt

a conservative test based on the sizing function (radius) at

the square’s center, the size of the square, and the maximum

rate of change of the sizing function [MREB12a]. The test

is a sufficient condition for discarding the cell, and becomes

more accurate (closer to necessary) as the square is refined.

4.3. Other conflict criteria

Mitchell et al. [MREB12a] defines other conflict conditions

such as the larger disk containing the center of the smaller

disk, or considering the order in which the samples were

drawn. For these, revising the condition of when to discard

a flat quadtree square is fairly straightforward. In addition,

the mean-radius conflict condition is interesting because it

produces a (half-radius) disk packing. The main challenges

are that the definitions of corners and the sample region may

depend on the unknown replacement disk. We leave these

variations, and higher-dimensions, for future work.

5. Maximal point cloud densities

Delaunay refinement is the worst; off-centers is better; and

sifting is the best, in terms of density. Table 1 summarizes the

average point density and Delaunay edge lengths (separation

sample point relative Delaunay

type density density edge lengths

�(r) 2√
3

r−2
3 {r}
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√
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3
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1.95 [r,2r)
MPS(r) 0.70r−2

1.82 [r,2r)
ODR(r) 0.64r−2

1.66 [r,2r)
sDR(r) 0.57r−2

1.48 [r,2r)
sMPS(r) 0.51r−2

1.33 [r,2r)
sODR(r) 0.51r−2
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√
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√

3
r−2

1 {
√

3r}

Table 1: (Average) point density and edge length ranges of
different maximal samples with uniform radius r.

distances) before and after sifting. Figure 8 shows quality

plots before and after sifting. We include the average output

of some common algorithms. We also include some extremal

distributions, in order to provide a theoretical upper bound

on how much a point cloud could be improved.

• �(r) is the points at the corners of the lattice of equilateral

triangles with side length r.

• �(r) is the square lattice with side length r, diagonal

length
√

2r.

• �(r) is the hexagonal lattice with side length r, diagonal

length 2r.

• MPS is Maximal Poisson-disk sampling.

• DR is Delaunay refinement, Delaunay circumcenter inser-

tion.

• ODR is off-center Delaunay refinement.

• sMPS, sDR, sODR are sifted MPS, DR, and ODR.

�(r) is the densest sampling respecting the minimum

separation distance, whereas �(
√

3r) is the least dense sam-

pling that still respects the maximality criteria. �(
√

2r) and

�(r) have the longest Delaunay edge lengths possible, 2r,

while still respecting the maximality criteria. (The densest

packings by dimension is a popular research topic [NS12].)

All these distributions satisfy the same inhibi-

tion/coverage criteria, but the variations are significant:

�(r) has three times as many points as �(
√

3r), and half

the maximum edge length of �(
√

2r) and �(r).

The aim of sifting is to obtain random points with density

close to that of �(
√

3r). In the case of MPS, we maintain

the inherent (and desirable) randomness of the sample. In

the case of DR and ODR, we introduce desirable random-

ness. Sifting MPS results provides two main advantages over

ODR: a larger reduction in the size of the sample as well as

a clean Fourier spectrum, discussed in Section 5.1.

© 2013 The Author(s)
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Sifting changes triangulation 
edge lengths, angles, Voronoi cell squish 
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Sifting changes triangulation 
edge lengths, angles, Voronoi cell squish 
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Sifting changes triangulation 
edge lengths, angles, Voronoi cell squish 
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Figure 8: Impact of sifting on meshing quality measures, for different input.

(a) Sifting does not introduce
an orientation bias to Delau-
nay edges: slope is uniform
random.

(b) Sifting time is linear in
the number of input points, and
roughly 4× longer than gener-
ating an MPS input.

Figure 9: Sifted edge orientations and sifting time.

oriented edges is an important property for certain meshing
and fracture simulation applications [EKL∗11].

5.2. Performance

On average, sifting an MPS point cloud requires 4 times
as long as generating the MPS sample. We sift one million
points in about 40 seconds, and the sifting process usually re-
duces the size of the sample by about 25%. Empirically our
sifting code takes linear time as demonstrated in Figure 9b.

There are also some theoretical reasons to expect linear
run-time: there are a linear number of pairs and each takes
constant time to consider. For the uniform case, the num-
ber of neighbors of a single point is a constant [EPM∗11,
EMD∗11]. This means that there are a linear number of pairs
before replacement. Empirically a linear number of pairs
(half of them) are replaced, so a linear number of pairs to-
tal are considered. Moreover, all of the local data structures
such as neighbor lists are of constant size. The flat quadtree
method is empirically linear in the number of samples pro-
duced [EMP∗12]. So the steps for a single pair take constant
expected time. This will also hold in the non-uniform case
if the sizing function (disk radii) does not vary too quickly,
but with worse constants [MREB12a]. In any case, run-time
is not worst-case linear because the location of a resample
candidate is random, and its location could be persistently
perverse, albeit with low probability.

MPS sMPS DR sDR

interior points 580 419 580 417
. . . reduction - 27% - 28%

min angle 30.6 30.5 31.7 30.6
max angle 115.5 114.7 110.7 115.5

min Vor ratio 1.30 1.23 1.26 1.24
max Vor ratio 1.994 1.998 1.982 1.998

Table 2: Mesh sifting savings and quality.

6. Applications

6.1. Stippling

We describe the process used to produce our stippling im-
ages, such as Figure 1. Given a grayscale image, we perform
edge detection.

We define a sizing function:

r(x) = rmin +(rmax − rmin)g
2(x) = rmin(1+Ag2(x))

Here g(x) ∈ [0,1] is the grayscale value of the pixel contain-
ing x, and is constant over the pixel. Here rmax ⇔ A scales
g and controls the contrast in the stippling density; we chose
A = 9. Here rmin is the length of the diagonal of a pixel. A
lower bound of rmin on the sizing function ensures that each
pixel accepts at most one sample point. This has the affect
of hiding the jumps in g(x) at pixel boundaries.

We generate an MPS using the minimum-disk conflict cri-
teria: �xi − x j� ≥ min(r(xi),r(x j)). We find a Regular trian-
gulation using r(x) for the weight of x. Finally, we sift the
point set as described in Section 4. To produce the image we
overlay the sifted points with the detected edges.

6.2. Meshing

Figure 10 shows uniform point clouds and Delaunay trian-
gulations before and after sifting. Table 2 shows the fraction
of interior points saved, and quality measures. In the table,
"Vor ratio" means the aspect ratio of a Voronoi cell: the ra-
tio of the distances from the farthest Voronoi vertex to the
sample, and the closest Voronoi edge to the sample.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

extremes	
  the	
  same,	
  25%	
  fewer	
  points	
  
angles	
  are	
  related	
  to	
  Voronoi	
  aspect	
  raBo	
  …	
  



DR and ODR  
Sometimes Appear Random 

•  Many control parameters 
–  Which circle (off) center to insert next? 

We picked random-looking ���
versions for comparisons,	


Not these!	



ODR	





Sifting Retains Randomness 
Surprise!   But not identical. 

sMPS	



MPS	


MPS	



Can you tell me which is “better”?���
What’s ideal?	





What’s happening? 
• Gets less dense but never gets close to 

“converging” to a structured mesh 
– No pair can be replaced by one. 
– A triple can be replaced by two? Would we want to? 

density	



3	

 2	

 1	

1.8	

 1.3	



MPS	

 sMPS	





Sifting (introduces?) Randomness 
Surprise!   But not identical. 

DR	



sDR	



Can you tell me which is “better”?���
What’s ideal?	



DR	





Sifting (introduces?) Randomness 
Surprise!   But not identical. 

ODR	



sODR	



Can you tell me which is “better”?���
What’s ideal?	



ODR	





Original distribution doesn’t  
seem to matter much 

sDR	



sDR	

MPS	



  sDR density 1.48���
sMPS density 1.33���
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Time and Memory  
Effectively Linear 

• Sifting 4x slower than generating MPS 
but done offline… 
≈ 1.5 million / minute on CPU 



Beyond Uniform 
•  Prior was all 2d, constant radius 

–  Spatially varying radii  
•  Theory 

–  Maximum rate of change L 
•  Stippling application 

–  L exceeded, still works 

	
  grayscale	
  sizing	
  funcBon,	
  high	
  contrast	
   abrupt	
  density	
  changes	
  



Beyond 2d 

• Prior was all 2d, constant disk radius 
– Higher dimension 

•  Seems straightforward to implement 
•  effectiveness unknown 
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Bonus Thought 
how I think about sampling 



Summary 

• Sifting (replace 2-for-1) points  
– Reduces the number of points 
– Retains randomness and quality 
– Poisson-disk sampling as a subroutine - resample 

• To do 
– Theory for rapidly varying sizing function, L >> 1 
– High dimensions 
– Generate a sparser distribution to begin with 


